The AnuBis Block Cipher

Paulo S.L.M. Barreto'* and Vincent Rijmen?**

! Scopus Tecnologia S. A.

A. Mutinga, 4105 - Pirituba
BR-05110-000 Sao Paulo (SP), Brazil
pbarreto@scopus.com.br
2 Katholieke Universiteit Leuven, Dept. ESAT,
Kard. Mercierlaan 94,

B-3001 Heverlee, Belgium
vincent.rijmen@esat.kuleuven.ac.be

Abstract. ANUBIS is a 128-bit block cipher that accepts a variable-
length key. The cipher is a uniform substitution-permutation network
whose inverse only differs from the forward operation in the key sched-
ule. The design of both the round transformation and the key schedule
is based upon the Wide Trail strategy and permits a wide variety of
implementation tradeoffs.

1 Introduction

In this document we describe ANUBIS, a 128-bit block cipher that accepts a
variable-length key.

Although ANUBIS is not a Feistel cipher, its structure is designed so that
by choosing all round transformation components to be involutions, the inverse
operation of the cipher differs from the forward operation in the key scheduling
only. This property will allow reducing the required chip area in a hardware
implementation, as well as the code and table size, which can be important
when ANUBIS is used e.g. in a Java applet.

ANUBIS was designed according to the Wide Trail strategy [4]. In the Wide
Trail strategy, the round transformation of a block cipher is composed of different
invertible transformations, each with its own functionality and requirements.
The linear diffusion layer ensures that after a few rounds all the output bits
depend on all the input bits. The nonlinear layer ensures that this dependency
is of a complex and nonlinear nature. The round key addition introduces the key
material. One of the advantages of the Wide Trail strategy is that the different
components can be specified quite independently from one another. We follow
the Wide Trail strategy in the design of the key scheduling algorithm as well.

* Co-sponsored by the Laboratdrio de Arquitetura e Redes de Computadores (LARC)
do Departamento de Engenharia de Computacdo e Sistemas Digitais da Escola
Politécnica da Universidade de Sdo Paulo (Brazil)

** F.W.O. Postdoctoral Researcher, sponsored by the Fund for Scientific Research —
Flanders (Belgium)

This document is organised as follows. The mathematical preliminaries and
notation employed are described in section 2. A mathematical description of
the ANUBIS primitive is given in section 3. A statement of the claimed security
properties and expected security level is made in section 4. An analysis of the
primitive with respect to standard cryptanalytic attacks is provided in section 5
(a statement that there are no hidden weaknesses inserted by the designers is ex-
plicitly made in section 5.10). Section 6 contains the design rationale explaining
design choices. Implementation guidelines to avoid implementation weaknesses
are given in section 7. Estimates of the computational efficiency in software are
provided in section 8. The overall strengths and advantages of the primitive are
listed in section 9.

2 Mathematical preliminaries and notation

We now summarise the mathematical background and notation that will be used
throughout this paper.

2.1 Finite fields

The finite field GF(28) will be represented as GF(2)[z]/p(x), where p(z) = 28 +
z* + 23 + 2% + 1 is the first primitive polynomial of degree 8 listed in [20]. The
polynomial p(z) was chosen so that g(z) = z is a generator of GF(28) \ {0}.

An element u = urz? + ugz® + usz® + szt + usz® + usx? + urz + ug of
GF(28) where u; € GF(2) for all i = 0,...,7 will be denoted by the numerical
value uz - 27 + ug - 26 4+ us - 25 4wy - 2% +uz - 2% + uyp - 22 + ug - 2 4+ ug, written in
hexadecimal notation (hexadecimal digits enclosed in quotes). For instance, the
polynomial v = z* + 2 + 1 will be represented by the hexadecimal byte value
‘13". By extension, the reduction polynomial p(z) may be written ‘11d".

2.2 Matrix classes

M xn|GF(28)] denotes the set of m x n matrices over GF(2%).

vdm,(ag,a1,--.,am—1) denotes the m x n Vandermonde matrix [11] whose
second column consists of elements ag,a1,...,0m_1, i.e.
2 n—1
1 a ag - Qg .
1 a a2 ...a}"
vdm,(ag,a1,---,0m_1) = .
2 n—1
la, ja5,_1---ap 3
We write simply vdm(ag, - . ., @m—1) where the number of columns is not impor-
tant for the discussion, or clear from the context.
If m is a power of 2, had(ag,...,am—1) denotes the m x m Hadamard ma-

trix [1] with elements h;; = aig);.

2.3 MDS codes

We provide a few relevant definitions regarding the theory of linear codes. For a
more extensive exposition on the subject we refer to [22].

The Hamming distance between two vectors 4 and v from the n-dimensional
vector space GF(2P)™ is the number of coordinates where u and v differ.

The Hamming weight wi(a) of an element a € GF(2P)™ is the Hamming
distance between a and the null vector of GF(2P)", i.e. the number of nonzero
components of a.

A linear [n,k,d] code over GF(2P) is a k-dimensional subspace of the vec-
tor space (GF(2P))", where the Hamming distance between any two distinct
subspace vectors is at least d (and d is the largest number with this property).

A generator matriz G for a linear [n,k,d] code C is a k X n matrix whose
rows form a basis for C. A generator matrix is in echelon or standard form if it
has the form G = [l xx Akx(n—k)], Where Iy is the identity matrix of order k.
We write simply G = [I A] omitting the indices wherever the matrix dimensions
are irrelevant for the discussion, or clear from the context.

Linear [n, k, d] codes obey the Singleton bound:

d<n—k+1.

A code that meets the bound, i.e. d = n — k + 1, is called a maximal distance
separable (MDS) code.

A linear [n, k,d] code C with generator matrix G = [Ixxx Akx(n—r)] is MDS
if, and only if, every square submatrix formed from rows and columns of A is
nonsingular (cf. [22], chapter 11, §4, theorem 8).

2.4 Cryptographic properties

A product of m distinct Boolean variables is called an m-th order product of the
variables. Every Boolean function f : GF(2)" — GF(2) can be written as a sum
over GF(2) of distinct m-order products of its arguments, 0 < m < n; this is
called the algebraic normal form of f. The nonlinear order of f, denoted v(f),
is the maximum order of the terms appearing in its algebraic normal form.

A linear Boolean function is a Boolean function of nonlinear order 1, i.e. its
algebraic normal form only involves isolated arguments. Given a € GF(2)", we
denote by I, : GF(2)® — GF(2) the linear Boolean function consisting of the
sum of the argument bits selected by the bits of a:

n—1
lo(z) = @ai - T
=0

A mapping S : GF(2") —» GF(2"),z — S[z], is called a substitution boz,
or S-box for short. An S-box can also be viewed as a mapping S : GF(2)" —
GF(2)" and therefore described in terms of its component Boolean functions
s : GF(2)" - GF(2),0 < i< n—1,ie. S[z] = (so(z),...,8n-1(x)).

The nonlinear order of an S-box S, denoted vg, is the minimum nonlinear
order over all linear combinations of the components of S:

Vg = aerélFl‘I(l2)"{V(la 0 9)}.

The difference table of an S-box S is defined as
es(a,b) = #{c € GF(2™)|S[c ® a] ® S[c] = b}.

The d-parameter of an S-box S is defined as

1
0s = 250.0) -lﬁ%,xbes(a, b).

The product § - e5(0,0) is called the differential uniformity of S.
The correlation ¢(f,g) between two Boolean functions f and g can be calcu-
lated as follows:

c(f,g) =2'"" - #{z|f(z) = f(9)} - L.
The A-parameter of an S-box S is defined as the maximal value for the
correlation between linear functions of input bits and linear functions of output

bits of S:

As = max c¢(l;,1l;08).
s (i,j)#o,O)(i°5)

The branch number B of a linear mapping 0 : GF(2P)* — GF(2P)™ is defined
as

B(#) = min{ws(a) + wn(6(a))}

Given an [k + m,k,d] linear code over GF(2?) with generator matrix G =
[Ttxt Mixm], the linear mapping 6 : GF(2P)* — GF(2P)™ defined by

fa)=a-M
has branch number B(8) = d; if the code is MDS, such a mapping is called an
optimal diffusion mapping [25].
2.5 Miscellaneous notation
Given a sequence of functions fn,, fm+1,-- -5 fn—1, fn, M < n, we use the notation

O:’L:m fr = fmofmg10 -0 fn_10fn,and O:n:n fr=fnofn10--:0fmy10 fm;

if m > n, both expressions stand for the identity mapping.

3 Description of the ANUBIS primitive

The ANUBIS cipher is an iterated ‘involutional’* block cipher that operates on a
128-bit, cipher state. It uses a variable-length, 32N-bit cipher key (4 < N < 10),
and consists of a series of applications of a key-dependent round transformation
to the cipher state.

In the following we will individually define the component mappings and con-
stants that build up ANUBIS, then specify the complete cipher in terms of these
components. The definitions are often parameterised by N, as many components
are used both in the round structure and in the key schedule.

3.1 Input and output

The cipher state is internally viewed as a matrix in My4y4[GF(2%)], and the
cipher key as a matrix in My x4[GF(2%)]. Therefore, 128-bit data blocks and
32N-bit cipher keys (externally represented as byte arrays) must be mapped to
and from the internal matrix format. This is done by function pu : GF(28)*N —
M «4[GF(2%)] and its inverse:

u(a)zb@bij=a4,-+j,0<i<N—1,0<j<3.

3.2 The nonlinear layer ~

Function 7 : Mnxa[GF(28)] - Mnyx4[GF(2%)], 4 < N < 10, consists of the
parallel application of a nonlinear substitution box S : GF(28) — GF(28), z —
S[z] to all bytes of the argument individually:

'y(a)zb iS4 bij=S[aij], 0<i<N-1,0<75<3.
The substitution box was pseudo-randomly chosen and is listed in appendix B.
The search criteria are described in section 6.2; one of them imposes that S

be an involution, i.e. S[S[z]] = z for all z € GF(2%). Therefore, v itself is an
involution.

3.3 The transposition 7

Mapping 7 : Max4[GF(28)] = M4 4[GF(28)] simply transposes its argument:
(@) =b & b=a' & b =aji, 0<4,j <3.

Clearly 7 is an involution.

! We explain in section 3.11 what we mean by an ‘involutional’ block cipher.

3.4 The linear diffusion layer 6

The diffusion layer § : My x4[GF(28)] = Mnw«4[GF(28)],4 < N < 10, is a linear
mapping based on the [8,4,5] MDS code with generator matrix Gy = [I H]
where H = had('Ol’, ‘02", 04, '06'), i.e.

‘01' ‘02" ‘04" ‘06’

‘02’ ‘01’ ‘06’ ‘04’

‘04’ '06’ ‘01’ ‘02’

‘06’ ‘04’ ‘02’ ‘01’
so that

O(a) =b & b=a-H.

A simple inspection shows that matrix H is symmetric and unitary. Therefore,
6 is an involution for N = 4.

3.5 The key addition o[k]

The affine key addition o[k] : Mnxa[GF(28)] - Mnx4[GF(28)], 4 < N < 10,
consists of the bitwise addition (exor) of a key matrix k € My «4[GF(2%)]:

olkl(a) =b & bij =a;; @ ki, 0<i<N—-1,0<j <3

This mapping is also used to introduce round constants in the key schedule, and
is obviously an involution.

3.6 The cyclical permutation 7

Permutation 7 : Myx4[GF(28)] — Mnx4[GF(2%)], 4 < N < 10, cyclically
shifts each column of its argument independently, so that column j is shifted
downwards by j positions:

m(a) =b & bij = a(i_jjmodN,j; 0 <IN —1,0<j <3,

3.7 The key extraction w

The key extraction function w : My x4[GF(28)] = M4.4[GF(2%)], 4 < N < 10,
is a linear mapping based on the [N + 4, N, 5] MDS code with generator matrix
Gy = [IV*], where V = vdmy(‘01’,02",°06',‘08"), i.e.

‘01 ‘01’ ‘01’ ... ‘01

‘01 ‘02" '02'2 ... ‘02'N-1
‘01' ‘06’ '06'2 ... ‘06'N 1 |
‘01’ ‘08’ ‘08’2 ... ‘08'V 1

V=

so that

w@)=be b=V-a.

3.8 The round constants ¢”

The r-th round constant (r > 0) is a matrix ¢" € Mnx4[GF(2%)], 4 < N < 10,
defined as:

ch; = S[A(r —1) + 41,0 < j < 3,
e =0, 1<i<N,0<j<3.

3.9 The key schedule

The key schedule expands the cipher key K € GF(28)*V, 4 < N < 10, onto a
sequence of round keys K°,..., KT with K™ € Myy4[GF(2%)]:

K = p(K),

k" = (o[c"] 0ofomoy)(k"1), >0,

K" =(rowoy)(k"), 0<7<R;

the composite mappings ¥[c"] = o[c"]cfom oy and ¢ = 7 ow oy are called,
respectively, the r-th round key evolution function and the key selection function.

The initial v applied to compute K plays no cryptographic role and is only kept
for simplicity.

3.10 The complete cipher

ANUBIS is defined for the cipher key K € GF(2%)*V as the transformation
ANUBIS[K] : GF(28)¢ — GF(2%)!6 given by

ANUBIS[K] = p~ o ag[K?,..., KR o,

where

r=R—

agr[K®,...,K®] =o[K®loToqyo0 (O 10[K7’]000707> o o[KY).
i

The standard number of rounds R is defined as R = 8 + N for 32N-bit keys,
4 < N < 10. The composite mapping p[K"] = o[K"]of o1 o is called the round
function (for the r-th round), and the related mapping p'[K®] = o[K"]oT 07y is
called the last round function.

3.11 The inverse cipher

We now show that ANUBIS is an involutional cipher, in the sense that the only
difference between the cipher and its inverse is in the key schedule. We will need
the following lemmas:

Lemma 1. Toy=~vor.

Proof. This follows from the fact that 7 only transposes its argument without
mixing elements, and «y only operates on individual elements, independently of
their coordinates. O

Lemma 2. §oo[K"] = o[¢(K")] 0 6.

Proof. Tt suffices to notice that (§ o o[K"])(a) = (K" ® a) = 0(K") @ 0(a) =

(o[0(KT™)] 0 6)(a), for any a € My x4[GF(28)]. O
We are now ready to state the main property of the inverse transform

agp'[K°,...,KE]:

Theorem 1. Let K® = K®, KR = K%, and K" = (K®~"), 0 <r < R. Then

agp'[K°,..., KR = ag[K",...,K"].

Proof. We start from the definition of ag[K?,..., K]

r=R—1
agr[K®,...,K®] = o[K®loToyo0 (O U[K’"]oeoro'y> o o[KY).
i

Since the component functions are involutions, the inverse transform is obtained
by applying them in reverse order:

ap'[K°,..., KR = o[K o (Ol'yOTOGOU[KT]) oyoToo[KH.

r=1

The two above lemmas lead to:

agp'[K°, ..., KR = o[K] o (RO Toyoco[d(K")] 09) oToyoo[KE.

r=

The associativity of functional composition allows for slightly changing the
grouping of operations:

agp'[K°...,Kf] =o[K%oToy0 (TQJU[Q(KT)] 000707> oo[KR.

Finally, by substituting K" in the above equation, we arrive at:

_ r=R—1 _ _
aRl[KO,...,KR]:a[KR]OTOfyo((1) O'[KT]OHOTO"Y) o o[K°].

That is, ap'[K°, ..., K% = ag[K?,...,KF|. O

Corollary 1. The ANUBIS cipher has involutional structure, in the sense that
the only difference between the cipher and its inverse is in the key schedule.

4 Security goals

In this section, we present the goals we have set for the security of ANUBIS. A
cryptanalytic attack will be considered successful by the designers if it demon-
strates that a security goal described herein does not hold.

In order to formulate our goals, some security-related concepts need to be
defined.

4.1 The set of ciphers for given block length and key length

A block cipher of block length v has V' = 2" possible inputs. If the key length is
u it defines a set of U = 2* permutations over {0,1}”. The number of possible
permutations over {0,1}” is V!. Hence the number of all possible block ciphers
of dimensions u and v is

(2 = (v

For practical values of the dimensions (e.g. v and u above 40), the subset of
block ciphers with exploitable weaknesses form a negligible minority in this set.

4.2 K-Security

Definition 1 ([4]). A block cipher is K-secure if all possible attack strategies
for it have the same expected work factor and storage requirements as for the
magority of possible block ciphers with the same dimensions. This must be the
case for all possible modes of access for the adversary (known/chosen/adaptively
chosen plaintext/ciphertext, known/chosen/adaptively chosen key relations ...)
and for any a priori key distribution.

K-security is a very strong notion of security. It can easily be seen that if one of
the following weaknesses apply to a cipher, it cannot be called K-secure:

— Existence of key-recovering attacks faster than exhaustive search;

— Certain symmetry properties in the mapping (e.g. any complementation
property);

— Occurrence of non-negligible classes of weak keys;

— Related-key attacks.

K-security is essentially a relative measure. It is quite possible to build a K-secure
block cipher with a 5-bit block and key length. The lack of security offered by
such a scheme is due to its small dimensions, not to the fact that the scheme
fails to meet the requirements imposed by these dimensions. Clearly, the longer
the key, the higher the security requirements.

4.3 Hermetic block ciphers

It is possible to imagine ciphers that have certain weaknesses and still are K-
secure. An example of such a weakness would be a block cipher with a block
length larger than the key length and a single weak key, for which the cipher
mapping is linear. The detection of the usage of the key would take at least a
few encryptions, while checking whether the key is used would only take a single
encryption.

If this cipher would be used for encipherment, this single weak key would
pose no problem. However, used as a component in a larger scheme, for instance
as the compression function of a hash function, this property could introduce a
way to efficiently generate collisions.

For these reasons we introduce yet another security concept, denoted by the
term hermetic.

Definition 2 ([4]). A block cipher is hermetic if it does not have weaknesses
that are not present for the majority of block ciphers with the same block and
key length.

Informally, a block cipher is hermetic if its internal structure cannot be exploited
in any attack.

4.4 Goal
For all allowed key lengths, the security goals are that the ANUBIS cipher is:

— K-secure;
— Hermetic.

If ANUBIS lives up to its goals, the strength against any known or unknown
attacks is as good as can be expected from a block cipher with the given dimen-
sions.

4.5 Expected strength

ANUBIS is expected, for all key lengths defined, to behave as good as can be
expected from a block cipher with the given block and key lengths (in the sense
of being K-secure and hermetic).

This implies among other things, the following. The most efficient key-
recovery attack for ANUBIS is exhaustive key search. Obtaining information from
given plaintext-ciphertext pairs about other plaintext-ciphertext pairs cannot be
done more efficiently than by determining the key by exhaustive key search. The
expected effort of exhaustive key search depends on the bit length of the cipher
key and is 2™~ applications of ANUBIS for m-bit keys.

The rationale for this is that a considerable safety margin is taken with
respect to all known attacks. We do however realise that it is impossible to make
non-speculative statements on things unknown.

5 Analysis

5.1 Differential and linear cryptanalysis

Due to the Square pattern propagation theorem (cf. [25], proposition 7.9), for
any two different input values it holds that the number of S-boxes with a different
input value in four consecutive rounds is at least B2 = 25. As a consequence,
no differential characteristic over four rounds has probability larger than 68 =
(275)%® = 27125 Due to the same theorem, no linear approximation over four
rounds has input-output correlation larger than AB" = (13 x 276)2% y 27575,
This makes classical differential or linear attacks, as well as some advanced
variants like differential-linear attacks, very unlikely to succeed for the full cipher.

10

5.2 Truncated differentials

The concept of truncated differentials was introduced in [15], and typically ap-
plies to ciphers in which all transformations operate on well aligned data blocks.
Since in ANUBIS all transformations operate on bytes rather than individual
bits, we investigated its resistance against truncated differentials. For 6 rounds
or more, no attacks faster than exhaustive key search have been found.

5.3 Interpolation attacks

Interpolation attacks [13] generally depend on the cipher components (particu-
larly the S-box) having simple algebraic structures that can be combined to give
expressions with manageable complexity. In such attacks, the attacker constructs
polynomials (or rational expressions) using cipher input/output pairs; if these
polynomials have small degree, only few cipher input/output pairs are necessary
to solve for their (key-dependent) coefficients. The complicated expression of the
pseudo-randomly generated S-box in GF(2%), in combination with the effect of
the diffusion layer, makes these types of attack infeasible for more than a few
rounds.

5.4 Weak keys

The weak keys discussed in this subsection are keys that result in a block cipher
mapping with detectable weaknesses. The best known case of such weak keys
are those of IDEA [4]. Typically, this weakness occurs for ciphers in which the
nonlinear operations depend on the actual key value. This is not the case for
ANUBIS, where keys are applied using exor and all nonlinearity is in the fixed
S-box. In ANUBIS, there is no restriction on key selection.

5.5 Related-key cryptanalysis

Related-key attacks generally rely upon slow diffusion and/or symmetry in the
key schedule. The ANUBIS key schedule inherits many properties from the round
structure itself, and was designed to cause fast, nonlinear diffusion of cipher key
differences to the round keys. In particular, the Vandermonde matrix V in the
key selection seems very effective in countering all kinds of key based attacks
known.

For key lengths that are larger than the length of one round key, it is in-
evitable that there exist sets of keys that produce identical values for at least
one round key. Of special interest for a related key attack seems the possibility
to find two different keys with identical values for two consecutive round keys.

The code defined by V has distance 5 and operates separately on the 4
columns of x". This means that two different x"-values can produce an equal
round key K" only if for all 4 columns it holds that they differ in either zero or
at least 5 bytes. In order to produce equal round keys in two consecutive rounds r
and r+ 1, this requirement has to be fulfilled for ™ and x"t!. The diffusion layer

11

0 that is employed in the key evolution function ensures that in total at least
5 columns have to be different in £™ and x™*!. We leave it as an open problem
to determine whether classes of keys can be determined that produce identical
round key values for two or more consecutive rounds. Even so, it is unclear how
such keys could possibly be used successfully in a related key attack.

5.6 The Square attack and its variants

In this section we describe an attack first presented in [5], together with its
variants [9]. We focus our attention on the ag transform, as the occurrences of
1 and its inverse merely change the data representation. We will denote by a” the
cipher state at the beginning of the r-round (input to), and by b" the cipher
state at the output of the ¢ key addition in the r-round; these quantities may
be indexed to select a particular byte. For instance, bzlj is the byte at position
(i,7) of the cipher state at the output of round 1.

The basic 4-round attack: Take a set of 256 plaintexts different from each
other in a single byte (which assumes all possible values), the remaining 15 bytes
being constant. After two rounds all 16 bytes of each cipher state a® in the set
will take every value exactly once. After three rounds, the exor of all 256 cipher
states a* at every byte position will be zero.

Consider a ciphertext b* = 7(y(a*)) ® K*; clearly a* = (7(b*) ® 7(K*?)).
Now take a byte from 7(b*), guess the matching byte from 7(K*) and apply ~
to the exor of these quantities. Do this for all 256 ciphertexts in the set and
check whether the exor of the 256 results indeed equals zero. If it doesn’t, the
guessed key byte is certainly wrong. A few wrong keys (a fraction about 1/256
of all keys) may pass this test; repeating it for a second set of plaintexts leaves
only the correct key value with overwhelming probability.

Adding a round at the end: The 4-round attack can be extended with an
extra round at the end. In this case, the round lacking 6 is the 5th rather than
the 4th. We initially observe that the byte a;‘j depends on the whole row j
of b*, which in turn depends on the whole column j of b°. To obtain it, first
guess column j of K® and compute row j of b* = y(7(b° ® K°®)) (i.e. compute
bi, = S[by; ® Ki,] for k = 0,...,3). Now take the byte at position (4, 5) of
7(8(b*)), guess the matching byte from 7(8(K*)) and compute S on the exor of
these quantities, recovering a?j and proceeding as in the 4-round attack.

This attack recovers four bytes of the last round key and one byte of the last
round key but one. The remaining bytes can be obtained in a variety of ways; in
the simplest case the process above could be merely repeated four times, though
three applications and a final exhaustive search for the few missing bytes are
often enough, and more efficient.

Overall, 2%° partial key values must be checked. Since each set of plaintexts
leaves about 1/256 of wrong keys, the whole process must be repeated for 5

12

sets of 256 plaintexts. However, after testing with the first set of 256 plaintexts,
only 240 x 278 = 232 partial key values survive, and only this fraction has to
be tested with the second set of plaintexts. Therefore, the first check determines
the complexity of the attack. The attack complexity is therefore 240 key guesses
x 28 plaintexts = 28 S-box lookups.

Adding a round at the beginning: The basic idea is to choose a set of
256 plaintexts such that a single byte of b' takes all possible values over the
set while the other 15 bytes remain constant, then proceed as with the 5-round
attack above. This is achieved by selecting 232 plaintexts with one column taking
all 232 values and the remaining 12 bytes constant, then guessing the four bytes
of K° on the same column, and filtering 256 plaintexts that differ from each
other in a single byte on that column.

There is a better way to add a round at the beginning, though. The
plaintexts above may be viewed as 22* groups of 256 encryptions that differ
from each other in a single byte of b'. Since the exor of the bytes at any position
(4,4) of a® over each group is zero, the exor at that position over all 232 plaintexts
is also zero. Thus, a?j is recovered as in the 5-round attack by guessing column
j of K® plus one byte at position (i,j) of 7(#(K?®)), and the result is exored
over the 232 encryptions, checking for zero. This test is somewhat weaker than
the test in the 5-round attack and may still leave about 1/256 of wrong keys;
therefore it needs about 6 x 232 chosen plaintexts. The effort involved is 240 key
guesses x 232 chosen plaintexts = 272 S-box lookups.

232

The partial sum improvement: This is a dynamic programming technique;
it trades computational effort for storage by reorganising the intermediate com-
putations.

Consider the 6-round attack, where we compute the exor of a byte a?j over
the set of encryptions by guessing five key bytes. Let kg, ..., ks be the guessed
key bytes; we may write

3
aZ; = SIEP Sile: @ ke] @ k), (1)

t=0

where the S; are bijective S-boxes consisting of S followed by a multiplication
by an element from the matrix H used in 6, and ¢; are the ciphertext bytes
on column j. Let z = @f:o St[ce @ kt]. When computing the exor of the a?j
bytes, terms with identical values of z, k41, - - . , c3 cancel each other. Therefore
we speed up the exor computation by first guessing the values of ky and %
and counting (mod 2) the occurrences of each triple (z1,cs,c3) over the set of
ciphertexts, then guessing k2 and counting (mod 2) the occurrences of each pair
(z2,c3) over the triples (z1,c2,c3), then guessing k3 and counting z3 over the
pairs (z2,c3), and finally guessing k4 and computing the sum over the values of
Zs3.

13

Notice that we initially guessed 2! pairs (ko, k1) and processed 232 cipher-

texts; for each pair (ko, k1) we guessed 28 values of k2 and processed 224 triples
(w1, c2,c3); for each triple (ko, k1, k2) we guessed 28 values of k3 and processed
216 pairs (x2,c3); for each quadruple (ko, k1, k2, k3) we guessed 28 values of ky
and processed 28 values of z3. Overall, this amounts to 2*8 evaluations of equa-
tion 1. This effort must be repeated for each of the 6 sets of encryptions used in
the attack, resulting in 6 x 2*® S-box lookups, or about 2** 6-round encryptions.
The space requirement is 224 + 216 4+ 28 bits for the counters.

There is an extension of the partial sum attack against 7 rounds of ANUBIS [9]
requiring 2128 — 2119 plaintexts, 264 bits of storage and an effort of about 2120
encryptions, and an extension to 8 rounds requiring 2128 — 2119 plaintexts, 2104
bits of storage and an effort of about 22°* encryptions. Although theoretically
interesting, these extensions are really “on the edge”: regardless of the cipher
being used, an attacker that manages to convince the key owner to encrypt
99.8% of all possible plaintexts under the same key could build a dictionary and
decrypt or forge at will an equal fraction of all possible message blocks, or an
arbitrary message block with 99.8% probability — without ever knowing the key
and without the effort of 2120 (let alone 2294) extra encryptions.

5.7 The Gilbert-Minier attack

The previous attack uses the fact that three rounds of ANUBIS can easily be
distinguished from a random permutation. The Gilbert-Minier attack [10] is
based on a 4-round distinguisher. The attack breaks 7 rounds of ANUBIS with
complexity: 232 guesses for one column of the first round key x 2! c-sets x 16
encryptions per entry x 280 entries/table x 2 tables = 2133 encryptions (about
2140 S bhox lookups), plus 232 chosen plaintexts. There is a speedup for 128-bit
keys, making the attack marginally faster than exhaustive search, according to
the attack authors.

5.8 A general extension attack

Stefan Lucks [21] presents a general extension of any n-round attack; the result
is an attack against (n + 1) or more rounds that works for long keys. The idea is
simply to guess the whole K™*! round key and proceed with the n-round attack.
Each extra round increases the complexity by a factor 228 S-box lookups.

Starting from the 7-round Gilbert-Minier attack, the 8-round extension costs
2140 % 2128 § hox lookups, or about 2261 8-round encryptions; therefore it is faster
than exhaustive key search for ANUBIS keys longer than 256 bits. An extension
to 9 rounds against 320-bit keys would require an 8-round attack of complexity
2192 encryptions or less, but none is known.

5.9 Other attacks

Attacks based on linear cryptanalysis can sometimes be improved by using non-
linear approximations [16]. However, with the current state of the art the ap-
plication of nonlinear approximations seems limited to the first and/or the last

14

round of a linear approximation. This seems to be even more so for ciphers using
strongly nonlinear S-boxes, like ANUBIS.

The impossible differential attack described in [3] can be adapted to work
against 5-round ANUBIS with 22°% chosen plaintexts and 23! steps.

The boomerang attack [26] benefits from ciphers whose strength is different
for encryption and decryption; this is hardly the case for ANUBIS, due to its
involutional structure.

We were not able to find any other method to attack the cipher faster than
exhaustive key search.

5.10 Designers’ statement on the absence of hidden weaknesses

In spite of any analysis, doubts might remain regarding the presence of trapdoors
deliberately introduced in the algorithm. That is why the NESSIE effort asks
for the designers’ declaration on the contrary.

Therefore we, the designers of ANUBIS, do hereby declare that there are no
hidden weaknesses inserted by us in the ANUBIS primitive.

6 Design rationale

6.1 Self-inverse structure

Involutional structure is found as part of many cipher designs. All classical Feistel
networks [8] have this property, as do some more general iterated block ciphers
like IDEA [23]. Self-inverse ciphers similar to ANUBIS were described and ana-
lyzed in [28,29].

The importance of involutional structure resides not only in the advantages
for implementation, but also in the equivalent security of both encryption and
decryption [17].

6.2 Choice of the substitution box
The S-box S was pseudo-randomly chosen to satisfy the following conditions:

— S must be an involution, i.e. S[S[z]] = = for all z € GF(28).
— The §-parameter must not exceed 8 x 278.

— The A-parameter must not exceed 16 x 276,

— The nonlinear order » must be maximum, namely, 7.

The values of § and A are constrained to be no more than twice the minimum
achievable values. The actual ANUBIS S-box has A = 13x276; experiences showed
that involutions with § < 8 x 278 and A < 13 x 27 are extremely rare, as none
was found in a set of over 600 million randomly generated S-boxes.

The following auxiliary conditions were also imposed to speed up the S-box
search:

— S must not have any fixed point, i.e. S[z] # z for all z € GF(2%).

15

— The value of any difference z & S[z] must occur exactly twice (hence the set
of all difference values consists of exactly 128 elements).

The absence of fixed points is inspired by the empirical study reported in sec-
tion 2.3 of [28], where the strong correlation found between the cryptographic
properties and the number of fixed points of a substitution box suggests min-
imising the number of such points. In a more general fashion, we empirically
found that the fraction of random involutions with good values of § and A is
increased not only by avoiding fixed points, but also by minimising the number
of occurrences of any particular difference z @ S[z] (or, equivalently, maximising
the number of such differences).

Finally, the polynomial and rational representations of S over GF(28) were
checked to avoid any obvious algebraic weakness. The random nature of the
search tend to make these representations as involved as possible.

6.3 Choice of the diffusion layer

The actual matrix used in the diffusion layer 8 was selected by exhaustive search.
Although other ciphers of the same family as ANUBIS use circulant matrices for
this purpose (cf. [5, 6]), it is not difficult to prove that no such matrix can be self-
inverse. On the other hand, unitary Hadamard matrices can be easily computed
that satisfy the MDS condition.

The actual choice involves coefficients with the lowest possible Hamming
weight (which is advantageous for hardware implementations) and lowest pos-
sible integer values (which is important for smart card implementations as dis-
cussed in section 7.2).

6.4 On the transposition 7 and the permutation 7

Though equivalent form the security viewpoint, 7 and 7 have quite different
structural properties. The round function needs an involution to disperse bytes,
hence 7 is not suitable for this task. The key schedule needs a mapping that keeps
the key state dimensions (N x 4) unchanged, hence 7 is not suitable in general.
Therefore both 7 and 7 are needed in different contexts; for their appointed
purposes, they are perhaps the simplest choices.

6.5 Structure of the key schedule

The key scheduling algorithm of ANUBIS is based on ideas from [25]. The division
into separate layers for diffusion and confusion is directly taken from the round
structure itself, which ultimately follows the Wide Trail strategy. The goal is to
thwart attacks based on straightforward exploitation of relationships between
round keys. The present choice also favours component reuse.

16

6.6 Choice of the key extraction function

The Vandermonde structure of the extraction function w has several interesting
properties.

First, it is not difficult to obtain MDS Vandermonde matrices by random
search if the number of rows is not too large. The reason is simple: many subma-
trices of a Vandermonde matrix V' are themselves Vandermonde matrices (e.g.
submatrices built from the even columns of V'), while the determinant of many
other submatrices divides the determinant of some Vandermonde matrix (e.g.
submatrices built from consecutive columns of V). Thus, merely choosing dis-
tinct nonzero elements on the second column of V' ensures that many submatrices
are nonsingular, and other simple tests speed up the search even more.

Second, it is possible to choose Vandermonde matrices with important prop-
erties for the key schedule. Thus, it was required that 6 o 7 o w, which is the
effective key extraction function in the inverse cipher, satisfy the same condi-
tions as w itself; therefore, all square submatrices of H - V' are nonsingular. We
remark en passant that the occurrence of 7 is motivated by the simple condition
it implies on the product H -V (if 7 were absent, these matrices would effectively
multiply the key state at opposite sides). The restriction to 320-bit keys comes
from the fact that this condition is no longer satisfied by extensions of V' with
more than 10 columns for the actually chosen V coefficients.

Third, multiplication by a Vandermonde matrix can be done quite efficiently
with a fast polynomial evaluation algorithm, as seen in section 7.1. The ease to
find suitable matrices provides freedom in the choice of coefficients, which can
make the polynomial evaluation even more efficient. The actual coefficients were
chosen to have the lowest possible Hamming weight (which is advantageous for
hardware implementations) while satisfying the condition on fo7ow as explained
above.

6.7 Choice of the round constants

Good round constants should not be equal for all bytes in a state, and also
not equal for all bit positions in a byte. They should also be different in each
round. Making only one row of ¢” different from zero makes the round constants
simpler. The actual choice meets these constraints while also reusing an available
component (the S-box itself).

7 Implementation

ANUBIS can be implemented very efficiently. On different platforms, different
optimisations and tradeoffs are possible. We make here a few suggestions.

7.1 32-bit and 64-bit processors

17

Implementation of p: We suggest the following lookup-table approach.

b=(0o707)(a)
0

bo’() b071 bo,z b0’3 S[aovo] S[al,o] S[a270] S[a370] ‘01’ ‘02' ‘04’ ‘06’
bl,O b1’1 bl,z b1’3 _ S[ao,l] S[al,l] S[ag’l] S[a3,1] . ‘02" ‘01" ‘06’ ‘04’
b2,0 b2,1 b2,2 b2,3 B S[ao,z] S[al’z] S[ag’z] S[a3,2] ‘04’ ‘'06' ‘01’ ‘02’
b3’0 b371 b3’2 b3,3 S[a0,3] S[a1’3] S[a2,3] S[a3,3] ‘06’ ‘04' ‘02’ ‘01’

0

[br,0 i1 bra brz] = Slao] - [01 02" ‘04’ '06'] @ S[as x] - ['02 ‘01" ‘06’ '04']
@ Slas,] - ['04 ‘06’ ‘01’ '02'] @ S[asx] - ['06’ ‘04’ ‘02’ '01’],
0<k<3.

Using the following four tables:

To[z] = S[z] - ['01' ‘02’ ‘04’ '06], Ti[z] = S[z] - ['02' ‘01’ ‘06’ ‘04'],
Ty[z] = S[z] - ['04' ‘06’ ‘01’ '02'], Ts[z] = S[z] - [‘06' ‘04" ‘02" ‘01'],

a row of b can be calculated with four table lookups and three exor operations;
the key addition then completes the evaluation of p. The T-tables require 4 x 2%
bytes of storage each. An implementation can use the fact that the corresponding
entries of different T-tables are permutations of one another and save some
memory at the expense of introducing extra permutations at runtime. Usually
this decreases the performance of the implementation.

Implementation of ¢: By definition, K™ = (tow o) (k") = (V - y(k™))? =
v(k")t - V*, so that KJ; = @n_y Slkp;]-a¥, which can be computed by the
following algorithm:

set Ki; = Sk _y il;
for(k=N-2k>0;k—) {
} set K[, = S[ky,] ® a;-KJj;

1)?
The columns of K;; can be computed in parallel:

set [Kjy Kj; Kj, Kj3] = S[k}y_, ;]-['01"'01" ‘01" '01'];
for(k=N-2k>0;k—) {

set [K7 K7y Kl Kiy] = S[k5;]-['01' ‘01’ ‘01" ‘01']
® K[,+[01' ‘00" ‘00’ '00’]
@ K7,-['00’' ‘02 ‘00’ '00’]
@ K7,-['00' 00’ ‘06’ '00’]
@ K75-['00' ‘00" ‘00" '08'];

18

Using the following two tables:
Ty[z] = S[z]-['01" ‘01" ‘01" ‘01'], Tj[z] =z -['01 ‘02" ‘06" ‘'08'],

arow of KJ; can be calculated with 1+ 5(N — 1) table lookups, 4(N — 1) bitwise
‘and’ operations (to properly mask the results of the T5 lookups), and 4(N — 1)
exor operations.

Alternatively, if enough storage (including processor built-in cache) is avail-
able for the following N tables:

Uile] = S[z] - ['01" ‘02°% 06™ ‘08'], 0 < k < N — 1,
then each row K™ can be computed as [K} K5, K5 K] = @n o Uxlry;] with

only N table lookups and N — 1 exor operations.

Implementation of v: The same lookup-table approach suggested for p can
be employed for 9, reusing the same T-tables:

b= (0omory)(a)

=4

[br,0 bk,1 br,2 br,3 | = Slak,e] -[01' 02" ‘04 ‘06']
® S[a(k—1)moan 1] - [102' ‘01’ ‘06" '04']
& Slag—smoan.2] - [‘04’ 06" ‘01’ ‘02']
® S[a(k_3)moan.a] - [106’ 04’ 02' ‘01'],
0<k<3,
(3

[bk,0 br,1 br,2 br,3 | = To[a,o]
® T1[a(k—1)mod N,1]

[

® T2[a(k—2)modN,2]
® T3[a(k—3)moan,s)s
0<k<3.

7.2 8-bit processors

On an 8-bit processor with a limited amount of RAM, e.g. a typical smart
card processor, the previous approach is not feasible. On these processors the
substitution is performed byte by byte, combined with the 7 and the o[K™]
transformation. For 6, it is necessary to implement the matrix multiplication.

The following piece of pseudo-code calculates one row of b = 6(a), using a
table X that implements multiplication by the polynomial g(z) = z in GF(28),
i.e. X[u] = z - u, and four registers ro,r1,72,7s3:

19

ro = X[an ® ai3l;

r1 = X[aio ® ain);

ro = X[X[ai2 ® ais]];
ry = X[X[aio (S5) ail]];
bio = aio @ 1o ® T2;
bit = a;1 ®r1 D12
bia = a2 ® 1o D135
bis = a;3 ®r1 D135

This implementation requires 12 exors, 6 table lookups and 8 assignments per
row. Notice that, if an additional table X2 is available, where X2[u] = X[X[u]],
the number of table lookups drops to 4.

The same X table can be used to implement multiplication by ‘06’ and
‘08". The following algorithm computes one row of K" = ¢(k") using auxiliary
registers u, v, and k:

set Kjy = K}, = Kj, = Kj3 = S[ky_; i];
for(k=N-2k>0;k—) {

set u = S[KL;];

set v = X[KDL];

set Ky =u @ Kjy;

set K, =u @ X[KJ]];

set K, =u @ X[v] & v;

sot, Kfy = u & X[X[X[KA]]};

}

This implementation requires 5(N — 1) exors, 1 + 7(N — 1) table lookups and
4+ 6(N — 1) assignments. With the extra X2 table the number of table lookups
drops to 1+ 6(N — 1) and the number of assignments to 4 + 5(N — 1).

7.3 Techniques to avoid software implementation weaknesses

The attacks of Kocher et al. [18,19] have raised the awareness that careless
implementation of cryptographic primitives can be exploited to recover key ma-
terial. In order to counter this type of attacks, attention has to be given to the
implementation of the round transformation as well as the key scheduling of the
primitive.

A first example is the timing attack [18] that can be applicable if the execu-
tion time of the primitive depends on the value of the key and the plaintext. This
is typically caused by the presence of conditional execution paths. For instance,
multiplication by a constant value over a finite field is sometimes implemented as
a multiplication followed by a reduction, the latter being implemented as a con-
ditional exor. This vulnerability is avoided by implementing the multiplication
by a constant by means of table lookups, as proposed in sections 7.1 and 7.2.

A second class of attacks are the attacks based on the careful observation of
the power consumption pattern of an encryption device [19]. Protection against
this type of attack can only be achieved by combined measures at the hardware

20

and software level. We leave the final word on this issue to the specialists, but we
hope that the simple structure and the limited number of operations in ANUBIS
will make it easier to create an implementation that resists this type of attacks.

7.4 Hardware implementation

We have currently no figures on the available performance and required area or
gate count of ANUBIS in ASIC or FPGA, nor do we have a description in VHDL.
However, we expect that the results on RIINDAEL [12,27] will carry over to a
large extent.

8 Efficiency estimates

8.1 Key setup

Table 1 lists the observed key setup efficiency on a 550 MHz Pentium IIT plat-
form. The key setup is implemented with two tables as described in section 7.1.
The storage needed for the tables is 28 x 4 x 2 = 2048 bytes.

Table 1. Key setup with two auxiliary tables

key size (bits)|cycles (encryption)|cycles (decryption)
128 3352 4527
160 4445 5709
192 6644 8008
224 8129 9576
256 9697 11264
288 11385 12931
320 13475 15169

The increased cost of the decryption key schedule is due to the application
of § to R — 1 round keys. This is done with the same tables used for encryption
and decryption, together with the T table to invert the implicit v transform.
The setup of decryption keys is therefore between 13% and 35% more expensive
than the setup of encryption keys.

We point out that the reference implementation used to measure efficiency is
not fully optimised. By using dedicated key setup assembler code for each allowed
key size (together with the N-table implementation described in section 7.1), we
expect a reduction of the cycle counts by a factor of at least 2.

8.2 Encryption and decryption

Since ANUBIS has involutional structure, encryption and decryption are equally
efficient for any given number of rounds, which in turn is determined by the
key size. Table 2 summarises the observed efficiency on a 550 MHz Pentium III
platform. We use the four-table implementation described in section 7.1.

21

Table 2. Encryption/decryption efficiency

key size (bits)|cycles per byte|cycles per block|Mbit/s
128 36.8 589 119.5
160 39.3 628 112.1
192 41.6 665 105.9
224 43.8 701 100.5
256 46.3 740 95.1
288 48.5 776 90.7
320 50.8 813 86.6

9 Advantages

By design, ANUBIS is much more scalable than most modern ciphers, in the
sense of being very fast while avoiding excessive storage space (for both code
and tables) and expensive or unusual instructions built in the processor; this
makes it suitable for a wide variety of platforms. The same structure also favours
extensively parallel execution of the component mappings, and its mathematical
simplicity tends to make analysis easier.

9.1 Comparison with other Square ciphers

In this section, we list the most important differences between ANUBIS and two
other ciphers developed according to the Wide Trail strategy, namely, SQUARE
and R1IJNDAEL.

The involutional structure: The fact that all components of ANUBIS are in-
volutions should in principle reduce the code size or area in software, respec-
tively hardware applications that implement both encryption and decryp-
tion.

The different S-box: The S-box of ANUBIS is generated in a pseudo-random
way. The advantage of this lack of structure is that providing a simple math-
ematical description seems more difficult. The polynomial expansion of the
S-box is certainly more involved. The disadvantages are the suboptimal dif-
ferential and linear properties, and the more complex hardware implemen-
tation.

A more complex key scheduling: The advantage is the improved resistance
against key based attacks, in particular the shortcuts for long keys. The
disadvantage is the higher cost: slower execution, a reduced key agility, larger
code or gate count.

9.2 Extensions

The chosen key selection function is based on matrix vdmpy('01’,'02’,‘06’, ‘'08),
which is MDS for N < 10. It is possible to extend the key schedule to sup-
port keys up to 512 bits (i.e. N < 16) by substituting vdmy(‘02’,'15’,‘1c’, ‘3c’)

22

for the default ANUBIS matrix. Especially crafted matrices might be chosen for
particular key sizes; for instance, vdm,(‘01’,°02’,'05’,'06’) may have some im-
plementation advantages for 128-bit keys.

10 The name

ANUBIS was the Egyptian god of embalming and entombment — hence, by ex-
tension, the god of ‘encryption’. The name seems therefore suitable for a cipher;
besides, this choice makes ANUBIS the only cipher with an associated curse
against information privacy invaders :-)

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

K.G. Beauchamp, “Walsh functions and their applications,” Academic Press, 1975.
E. Biham, A. Biryukov, A. Shamir, “Cryptanalysis of Skipjack Reduced to 31
Rounds using Impossible Differentials,” Advances in Cryptology, Eurocrypt’99,
LNCS 1592, J. Stern, Ed., Springer-Verlag, 1999, pp. 55-64.

. E. Biham and N. Keller, “Cryptanalysis of reduced variants of RIJNDAEL,” sub-

mission to the Third Advanced Encryption Standard Candidate Conference.

. J. Daemen, “Cipher and hash function design strategies based on linear and dif-

ferential cryptanalysis,” Doctoral Dissertation, March 1995, K.U.Leuven.

J. Daemen, L.R. Knudsen and V. Rijmen, “The block cipher SQUARE,” Fast Soft-
ware Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 149-165.
J. Daemen and V. Rijmen, “AES proposal: RIINDAEL,” AES submission,
http://www.nist.gov/aes.

W.V. Davies, “Reading the Past — Egyptian Hieroglyphics,” University of Califor-
nia Press/British Museum, 1987.

H. Feistel, “Cryptography and computer privacy,” Scientific American, v. 228, n. 5,
1973, pp. 15-23.

N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting,
“Improved Cryptanalysis of RIINDAEL,” to appear in Fast Software Encryption’00,
Springer-Verlag.

H. Gilbert and M. Minier, “A collision attack on 7 rounds of RIINDAEL,” Third
Advanced Encryption Standard Candidate Conference, NIST, April 2000, pp. 230-
241.

K. Hoffman and R. Kunze, “Linear Algebra (2nd ed.),” Prentice Hall, 1971.

T. Ichikawa, T. Kasuya, M. Matsui, “Hardware evaluation of the AES finalists,”
presented at the Third Advanced Encryption Standard Candidate Conference.

T. Jakobsen and L.R. Knudsen, “The interpolation attack on block ciphers,” Fast
Software Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 28-40.
J. Kelsey, B. Schneier, D. Wagner, C. Hall, “Cryptanalytic Attacks on Pseudoran-
dom Number Generators,” Fast Software Encryption, LNCS 1372, S. Vaudenay ,
Ed., Springer-Verlag, 1998, pp. 168-188.

L.R. Knudsen, “Truncated and higher order differentials,” Fast Software Encryp-
tion, LNCS 1008, B. Preneel, Ed., Springer-Verlag, 1995, pp. 196-211.

L.R. Knudsen, M.J.B. Robshaw, “Non-linear approximations in linear cryptanaly-
sis,” Advances in Cryptology, Eurocrypt’96, LNCS 1070, U. Maurer, Ed., Springer-
Verlag, 1996, pp. 224-236.

23

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

L.R. Knudsen and D. Wagner, “On The Structure of Skipjack,” to appear in
Discrete Applied Mathematics, special issue on Coding Theory and Cryptology,
C. Carlet, Ed.

P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” Advances in Cryptology, Crypto '96, LNCS 1109, N. Koblitz,
Ed., Springer-Verlag, 1996, pp. 104-113.

P. Kocher, J. Jaffe, B. Jun, “Introduction to differential power analysis and related
attacks,” available from http://www.cryptography.com/dpa/technical/.

R. Lidl and H. Niederreiter, “Introduction to finite fields and their applications,”
Cambridge University Press, 1986.

S. Lucks, “Attacking seven rounds of RIJINDAEL under 192-bit and 256-bit keys,”
Third Advanced Encryption Standard Candidate Conference, NIST, April 2000,
pp. 215-229.

F.J. MacWilliams and N.J.A. Sloane, “The theory of error-correcting codes,”
North-Holland Mathematical Library, vol. 16, 1977.

X. Lai, J.L. Massey and S. Murphy, “Markov ciphers and differential cryptanaly-
sis,” Advances in Cryptology, Eurocrypt’91, LNCS 547, D.W. Davies, Ed., Springer-
Verlag, 1991, pp. 17-38.

National Institute of Standards and Technology, “FIPS 186-2, Digital Signature
Standard (DSS),” January 27, 2000.

V. Rijmen, “Cryptanalysis and design of iterated block ciphers,” Doctoral Disser-
tation, October 1997, K.U.Leuven.

D. Wagner, “The Boomerang Attack,” Fast Software Encryption, LNCS 1636,
L. Knudsen, Ed., Springer-Verlag, 1999, pp. 156-170.

B. Weeks, M. Bean, T. Rozylowicz, C. Ficke, “Hardware performance simulations
of round 2 AES algorithms,” presented at the Third Advanced Encryption Standard
Candidate Conference.

AM. Youssef, S.E. Tavares, and H.M. Heys, “A New Class of Substitution-
Permutation Networks,” Workshop on Selected Areas in Cryptography, SAC’96,
Workshop record, 1996, pp. 132-147.

A .M. Youssef, S. Mister, and S.E. Tavares, “On the Design of Linear Transforma-
tions for Substitution Permutation Encryption Networks,” Workshop on Selected
Areas of Cryptography, SAC’97, Workshop record, 1997, pp. 40-48.

A Generation of the ANUBIS substitution box

To ensure that the involutional S-box used by ANUBIS is generated verifiably
pseudo-randomly, the S-box search algorithm uses a PRNG similar to the one
specified for generating DSA [24] parameters?.

1.

The PRNG is keyed by the 20-byte array k = SHA-1(m), where m is the
ASCII-coded string “An offering which Anubis gives” (in Middle King-
dom Egyptian, htp di ’Inpw, cf. [7], pp. 14 and 46).

2 It is pointed out in [14] that the DSA PRNG is not suitable for generating pseudo-

random bytes that must be kept secret, e.g. for establishing secret keys. This is not
the present case, as the PRNG is only used to pseudo-randomly generate the ANUBIS
involutional S-box in a verifiable fashion.

24

2. The PRNG maintains two 20-byte arrays, a state s(¥ and a buffer b, both
initialised to zero. The value of b(® is computed from the key k and the
state z(9). Pseudo-random bytes are taken from b(*) (for implementation
convenience, this is done from right to left, i.e. from index 19 down to index
0). At any moment, the PRNG keeps track of the number of remaining bytes
on b(?) (initially zero).

3. When the number of remaining available bytes on b() drops to zero, b?) and
z() are updated as follows:

(a) b0+ = SHA-1((k + s() mod 216°).

(b) st = (s + b 4+ 1) mod 2.

where the the arrays represent 160-bit integers in little-endian order (i.e. the
value associated to z(¥) is 312 256% - (D [¢]).

The ANUBIS S-box is pseudo-randomly generated according to the following
algorithm, which makes use of a stream of pseudo-random bytes produced by
the above PRNG:

1. Generate a list p containing a random permutation of all 255 nonzero byte
values (p is the difference list).

2. Mark all entries of S as initially undefined.

3. For each preimage z of the S-box being constructed do the following:

(a) Sequentially extract from p the first unused difference d such that entry
S[z @ d] is undefined; if none is found, start over with a new random
permutation p.

(b) Let y =z @ d: set S[z] =y and S[y] = z (thus implicitly marking entry
S[z] and S[y] as defined and the difference d as used).

(c) Replace the gap left by d in p by the last element of p (this step is done
this way merely to simplify the handling of p, which may be implemented
as an array of bytes).

At the end of this algorithm, S contains a pseudo-random involution over GF (28)
in such a way that, for all z € GF(28), S[z] # z, and the difference value S[z]®z
occurs exactly twice over the table. Now test S for 6 < 8, A < 16, and v = T;
if the test fails, start over with a new random permutation p. Repeat the whole
process a number of times (over 600 million in our actual run) and select the
generated S box with the smallest values of § and A. A final inspection of the
polynomial and rational expansions of S is conducted to check for any obvious
weakness (quite unlikely for pseudo-randomly generated S-boxes).

B The substitution box

const byte sbox[256] = {

0xa7, 0xd3, Oxe6, 0x71, 0xd0, Oxac, O0x4d, 0x79,
0x3a, 0xc9, 0x91, Oxfc, Oxle, 0x47, 0x54, Oxbd,
0x8c, Oxab, 0x7a, Oxfb, 0x63, 0xb8, O0xdd, 0xd4,
0Oxeb, 0xb3, Oxcb, Oxbe, 0xa9, 0x88, 0x0c, 0xa2,

25

0x39, Oxdf, 0x29, Oxda, 0x2b, 0xa8, Oxcb, Ox4c,
0x4b, 0x22, Oxaa, 0x24, 0x41, 0x70, Oxa6, 0xf9,
0xba, Oxe2, 0xb0O, 0x36, 0x7d, Oxe4, 0x33, Oxff,
0x60, 0x20, 0x08, 0x8b, Oxbe, Oxab, 0x7f, 0x78,
0x7c, 0x2c, 0x57, 0xd2, Oxdc, 0x6d, 0x7e, 0x0d,
0x53, 0x94, 0Oxc3, 0x28, 0x27, 0x06, O0xbf, Oxad,
0x67, Oxbc, 0x55, 0x48, 0x0e, 0x52, Oxea, 0x42,
0x5b, Oxbd, 0x30, 0x58, 0xb1l, 0x59, 0x3c, Ox4e,
0x38, 0x8a, 0x72, 0x14, 0xe7, 0xc6, Oxde, 0x50,
0x8e, 0x92, 0Oxd1, 0x77, 0x93, 0x45, 0x9a, Oxce,
0x2d, 0x03, 0x62, 0xb6, 0xb9, Oxbf, 0x96, 0x6b,
0x3f, 0x07, 0x12, Oxae, 0x40, 0x34, 0x46, Ox3e,
0xdb, Oxcf, Oxec, Oxcc, Oxcl, Oxal, OxcO, 0xd6,
0x1d, Oxf4, 0x61, 0x3b, 0x10, 0xd8, 0x68, 0xaol,
0Oxbl, 0x0a, 0x69, O0x6c, 0x49, Oxfa, 0x76, Oxc4,
0x9e, 0x9b, Ox6e, 0x99, 0xc2, 0xb7, 0x98, Oxbc,
0x8f, 0x85, Ox1f, Oxb4, 0xf8, 0x11, Ox2e, 0x00,
0x25, Oxlc, 0x2a, 0x3d, 0x05, 0x4f, 0x7b, 0xb2,
0x32, 0x90, Oxaf, 0x19, Oxa3, 0xf7, 0x73, 0x9d,
0x15, 0x74, Oxee, Oxca, 0x9f, 0x0f, Ox1b, 0x75,
0x86, 0x84, 0x9c, Ox4a, 0x97, Oxla, 0x65, 0xf6,
Oxed, 0x09, Oxbb, 0x26, 0x83, Oxeb, 0x6f, 0x81,
0x04, 0Ox6a, 0x43, 0x01, 0x17, Oxel, 0x87, 0xf5,
0x8d, 0xe3, 0x23, 0x80, 0x44, 0x16, 0x66, 0x21,
Oxfe, 0xd5, 0x31, 0xd9, 0x35, 0x18, 0x02, 0x64,
0xf2, Oxf1, 0x56, Oxcd, 0x82, 0xc8, Oxba, 0xfO,
Oxef, 0xe9, 0xe8, Oxfd, 0x89, 0xd7, Oxc7, 0xbb,
Oxa4, 0x2f, 0x95, 0x13, 0xOb, 0xf3, O0xe0, 0x37

}s

26

