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➢ Vulnerability of Synthetic Aperture Radar (SAR)-based ship recognition models to adversarial 
attacks. 

➢ Fast Gradient Sign Method (FGSM) to generate adversarial examples

➢  Adding perturbations to SAR ship images to 

➢ mislead a pre-trained convolutional neural network (CNN). 

➢ To analyze the impact of these attacks:

➢ Local Interpretable Model-agnostic Explanations (LIME) algorithm. 

➢ An Explainable Artificial Intelligence (XAI) method.

➢ To explain the contributing area in the input image to the CNN’s decision-making process under 

adversarial conditions. 
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➢ Finally, we propose an ensemble learning strategy 

➢ Combining multiple transfer learning-based architectures 

➢ To enhance the robustness of ship recognition systems

➢ Against adversarial examples and mitigate their transferability. 

➢ Our real data experiment is conducted on OpenSARShip dataset:

➢  Consists of different ship images extracted from 41 images captured by Sentinel-1 SAR satellite.
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➢ Synthetic Aperture Radar (SAR): 

➢ one of the most powerful sensors in the remote sensing field

➢ high-resolution images regardless of weather conditions.  

➢ Instead of using a physically large antenna to improve resolution, 

➢ SAR synthesizes a much larger, virtual antenna 

➢ by combining radar signals collected over time

➢ as the platform (e.g., aircraft or satellite) moves along its flight path.  

➢ While CNNs perform well in SAR ship recognition,

➢ their decision-making processes are not clear.

➢ lack of transparency can make it difficult to rely on the CNN’s decision,

➢ especially in critical applications like maritime surveillance. 

➢ eXplainable AI (XAI) techniques to provide explanations for the model’s decision
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➢ Questions:

➢ XAI’s behavior under adversarial attacks?

➢ How to enhance model robustness and resilience against such attacks?

➢ What is an adversarial attack?

➢ Very small changes added to the input data

➢ To force the model into misclassification
➢ Can be imperceptible even to experts.

➢ Can be transferable to other models (DNNs and even traditional classifiers)
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➢ Fast Gradient Sign Method (FGSM): A well-known technique to generate adversarial samples 
➢ Non-targeted specific incorrect class does not matter, just incorrect! (≠ Targeted) 

➢ white-box: full knowledge of the model’s architecture and parameters is available for generation of adversarial 
samples

➢ evasion attack: deceiving a pre trained model - without poisoning the training data 

➢ ε: scaling factor  for the perturbation 
➢ trade-off:

➢ its too small values might fail to fool the network, 

➢ its too large values could lead to an easily detectable image, which raises suspicion or even the possibility of 

being filtered by defensive algorithms



LIME
➢ LIME: Local Interpretable Model-Agnostic Explanations

➢ To explain the predictions of any complex machine learning models and 

➢ Understand their decision-making process. 
➢ In image classification task:

➢ LIME highlights the most influential superpixels (features) of the input image 

➢ that contribute to the model’s decision. 

➢ LIME generates perturbed versions of the input image 

➢ by randomly masking different regions

➢ turning superpixels on and off and observes how these changes affect the model’s predictions. 

➢ These perturbed instances are passed through the model 

➢ their corresponding predictions are collected. 
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LIME
➢ These perturbed instances, along with their corresponding predictions:

➢ are then used to fit a simple, interpretable model like a linear regression. 

➢ This surrogate model g:

➢ Locally approximates the behavior of the original model f
➢ in the local neighborhood of the input image. 
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1. Training a baseline CNN model (using the training 
dataset.)

2. Applying FGSM method 

a. by an adversary in practical scenarios, 

b. to generate adversarial perturbations
c. aimed at confusing the pre-trained baseline 

model

d. when applied to the test dataset. 

3. Inputs to the LIME method for generating explanations:

a) All perturbed test samples at different levels 

of perturbation, 

b) along with the pre-trained model



SYSTEM OVERVIEW
➢ LIME: treats the pre-trained model as a black-box

➢ Enables: understand the most important part of the 

input images.

➢ Transfer learning: VGG19, ResNet50, and MobileNet 

➢ Pre-trained on the ImageNet dataset

➢ fine-tuned using the training dataset 

➢ Evaluate using the perturbed test dataset (designed for 

the baseline model. )

➢ Assess the transferability of perturbed samples across 

different models. 
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➢ A voting mechanism:

➢  ensemble learning strategy 

➢ Selecting the most frequently predicted class among the models. 



SYSTEM OVERVIEW
➢ A rejection mechanism:

➢ labeling a prediction as unreliable 

➢ if significant variation exists among 

predictions from different models. 

➢ This rejection mechanism
➢ enhance the robustness and reliability of the 

ensemble predictions,

➢ particularly in scenarios where the cost of 

misclassification can be high.
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Real Data Analysis
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➢ OpenSARShip-v1: 

➢ Ship patches extracted from 41 Sentinel-1 C band SAR satellite images captured under different conditions. 

➢ 11346 SAR ship chips 
➢ We constructed:

 a balanced three-category scenario: bulk carriers, container ships, and tankers

➢ We used 169 training images per class (in total 507 images).

➢ Curated the test dataset by selecting 120 correctly classified images per class (overall 360 images).

➢ Establish a starting point of 100% overall accuracy before introducing adversarial 



Real Data Analysis
➢ Visual effects of FGSM-generated adversarial perturbations on a test image from the OpenSARShip-v1 database
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Real Data Analysis ➢  The effects of increasing adversarial perturbation levels 
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Real Data Analysis
➢ t-SNE: a statistical nonlinear dimensionality reduction technique for embedding high-dimensional data for 

visualization in a low-dimensional space of two or three dimensions.
➢ In our analysis:

➢ to visualize how similarities between test samples are affected by perturbations
➢ The first column:

➢ perturbation free scenario:

➢ well-separated features and an ideal accuracy of 1 (data-selection to isolate the specific impact of 

perturbations)
➢ As perturbation levels increase:

➢ features in the t-SNE plot becoming less distinct, 

➢ confusion matrices become less diagonal, 
➢ precision and recall metrics in the classification reports deteriorate. 

➢ model’s ability to differentiate between classes is compromised.
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Real Data Analysis
➢ How overall accuracy decreases 

as the adversarial perturbation level ϵ increases. 
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Real Data Analysis
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➢ LIME’s explanation for the most probable class, 

under different perturbation levels
➢ The image belongs to class 2

➢ The image is correctly classified at ε = 0 and 

0.01

➢ Is misclassified as class 1 at ε = 0.02 and 0.04

➢ Is misclassified as class 0 when ε = 0.06, 

0.08, 0.1, 0.3, and 0.5.



Real Data Analysis
➢ Transfer learning-based ensemble approach: 

➢ VGG19, ResNet50,and MobileNet  models

➢ Majority voting: “Ensemble approach”

➢ significantly outperforms the “Baseline 

model” as perturbation levels rise
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Real Data Analysis
➢ Another voting mechanism: to assess the 

reliability of each prediction
➢ This reliability measure can be interpreted 

➢ as a form of classifier with rejection, 

➢ and it falls under the scope of open-set 
recognition (OSR) algorithms 

➢ Accuracy after excluding unreliable 

predictions based on two voting criteria:

➢ “2 out of 3”: considers a prediction reliable if 

at least two predictions are the same, 

➢  “3 out of 3” requires all three predictions to 

match for reliability. 
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Real Data Analysis
➢ Higher accuracy doesn’t always translate to better 

performance!

➢  as it may result from rejecting a significant portion of 

the test set

➢ “3 out of 3” criterion:

➢  gives the highest overall accuracy.

➢  However, with the expense of rejecting a 

substantial portion of test images

➢  which is not be acceptable in real-world scenarios.

➢ The rejection ratio of “2 out of 3” 

➢ falls between 3 to 5 percent

➢ shows a better balance between accuracy and the 

proportion of rejected samples.
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➢ Investigation of the vulnerability of SAR-based ship recognition models to adversarial attacks
➢ Our analysis: 

➢ How adversarial perturbations degrade the CNN’s classification performance

➢ How LIME method can also be misleading. 

➢ The mitigating the impacts of adversarial attacks on such systems, especially in critical maritime 
surveillance applications, is necessary. 

➢ The reliability of the explanations provided by LIME:

➢  Depends on how much the input data is perturbed. 

➢  Explanations: can vary significantly under adversarial perturbations:

➢ Inconsistent and possibly unreliable interpretations. 
➢ An adversary, by strategically perturbing the input:

➢  can manipulate LIME to emphasize features that are irrelevant or even incorrect, in order to deceive 

the end user. 



Conclusions
➢ Over-reliance on LIME, without a comprehensive understanding of its constraints:

➢  can lead to a false sense  of trust in the model’s decisions.  

➢ Since LIME approximates the complex decision boundary of a CNN with a simpler model, it is prone to producing 

inaccurate and oversimplified explanations.

➢ We proposed:

➢ a transfer learning-based ensemble learning strategy

➢  to enhance the robustness of ship recognition models against adversarial examples.
➢ We analyzed: 

➢ the reliability of each prediction through a voting mechanism, along with an option to reject the 

unreliable predictions
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Conclusions
➢  Question:
1. One could realistically alter the images before model 

inference in a real attack, 

2. What kind  of access would be needed to the model. 

➢ The neural network’s input: likely well-protected and not exposed 

to adversaries.

➢ Makes direct manipulation of input data challenging. 

➢ Nevertheless, there must be an interface for capturing and feeding 
data 
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➢ One potential approach:

➢ to attach a small, carefully designed patch or sticker to the target. 

➢ Exploiting the vulnerabilities of the imaging radar
➢ this patch could sufficiently alter the radar signature  to deceive

T. B. Brown, D. Mané, A. Roy, M. Abadi and J. 

Gilmer, "Adversarial patch" in arXiv:1712.09665, 

2017.



Conclusions
➢  Future research directions include different defensive strategies:

➢ adversarial training: re-training with perturbed images

➢ ensemble learning with non-CNN models

➢ Adversarial perturbation can be applied to object detection task in maritime applications 

➢ with SAR images.

➢ Incorporating LIME results in a feedback loop to help build a better classifier is crucial.
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Thank you for 
your attention

Any questions?
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