

Hacking on the High Seas: How Automated Reverse-Engineering Can Assist Vulnerability Discovery of a Proprietary Communication Protocol

Gábor Visky, Alexander Rohl, Risto Vaarandi, Sokratis Katsikas, Olaf Maennel

8-10 October 2024, Caen, France

How Automated Reverse-Engineering Can Assist Vulnerability Discovery of a Proprietary Communication Protocol

Gábor Visky, Risto Vaarandi, Tallinn University of Technology Sokratis Katsikas, Novegian Universitiy of Science and Technology Olaf Maennel, Alexander Rohl The University of Adelaide

Agenda

Motivation

Methods

Results

Motivation

There is room for improvement in the maritime sector regarding cyber security.

A high number of standardised and proprietary protocols are used in the field.

Manual reverse engineering of an unknown protocol is very demanding.

Automated Protocol Reverse Engineering

Research Environment

Wärtsilä (Transas) Communication Protocol

Offset	Function	Example value
00	Full length of the payload	44 00 00 00
04	Unknown/static	00
05	Timestamp Continuously increasing value	fe a7 cc 6e 9c 00 00 00
13	Sender's (DCU) IP	0a 8c 21 07
17	Message type	01
18	Channel number arrived	04
19	Length of 61162-1 data	31 00
21	Static	13 00
23	IEC61162-1 data	24 56 4d 2c 0d 0a

NMEA Sentence Length Field

Payload Length

Timestamp

Corrected Timestamp

STRIDE Methodology

Threat identification

Authenticity Spoofing

Integrity **T**ampering

Non-repudiation Repudiation

Confidentiality Information Disclosure

Availability **D**enial of Service

Authorization Elevation of Privilege

Successful attack - Spoofing

Successful attack – Information Disclosure

```
0000
            00 00 45 00 00 85
                                9e 6e 40 00 80 06 00 00
                                                              · · · · E · · · · n@ · · · · ·
      02 00
                                                              ··!···!· ·c·,·j··
0010
      0a 8c 21 07 0a 8c 21 07
                                 c3 63 ef 2c ee 6a d9 11
                                                              · · · · P · ' · · a · · Y · · ·
0020
      86 b2 b6 80 50 18 27 f6
                                 c2 61 00 00 59
0030
      00 c6 53 d3 6e 9c 00 00
                                     0a 8c 21 07 01 00 46
                                                              · · S · n · · · · · · ! · · · F
0040
                                                              ••• $GPGG A,130000
            00 24 47 50 47 47
                                  41 2c 31 33 30 30 30 30
0050
      2c 34 39 35 33 2e 38 31
                                  38 32 34 31 2c 4e 2c 30
                                                              ,4953.81 8241,N,0
0060
     30 36 31 36 2e 39 39 30
                                                              0616.990 878,W,2,
                                 38 37 38 2c 57 2c 32 2c
0070
     34 2c 30 2e 39 2c 31 31
                                 2e 30 2c 4d 2c 2c 2c 31
                                                              4,0.9,11 .0,M,,,1
      2c 38 39 36 2a 30 32 0d
                                                              .896*02·
0080
                                  0a
```


Successful attack - Tampering

Successful attack – Water depth modification

Conclusion

APRE can be successfully used on this protocol.

The introduced details of the proprietary protocol can be directly used in cyber-related operations.

The executed attacks show the protocol's weaknesses exploitation.

This research was funded by the EU Horizon2020 project MariCybERA (agreement No 952360)

https://maricybera.taltech.ee/

