

Threat Hunting and Security Analysis for Maritime Vessels

Simon Yusuf Enoch, **Hyunjae Kang**, Huy Kang Kim, Dan Dongseong Kim

Maritime Vessels & Cyber Threats

- Maritime IT/OT systems (navigation, communications, cargo management, etc.) face a rising number of cyber incidents.
 - e.g., Marlink SOC reported 14.8 B events in 2024.

Main cyber threats and motivations

Financial gain

Cybercriminals take advantage of vulnerabilities in maritime systems or personnel to carry out financial fraud or theft, frequently focusing on monetary transactions, contracts, and confidential financial information.

Corporate espionage

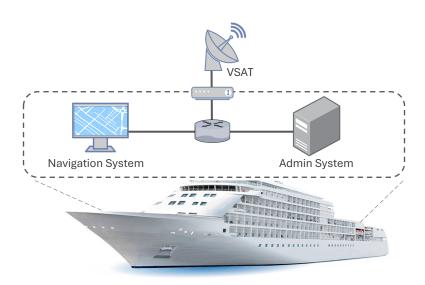
Cyber adversaries conduct espionage to acquire sensitive or confidential information, typically for competitive advantage, political leverage, or military intelligence purposes.

2

During the latter half of the year, cybercriminals targeting the maritime sector were driven by several key motivations:

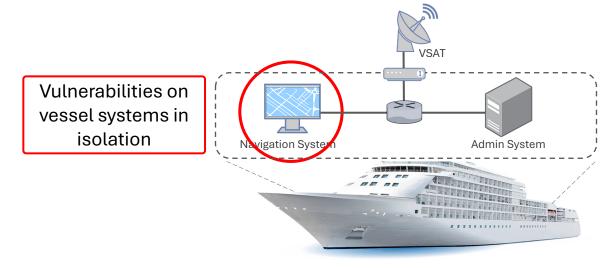
Hacktivism

Threat actors seek to interfere with or damage essential systems, leading to major disruptions in business operations, often with the goal of debilitating an organisation or industry.

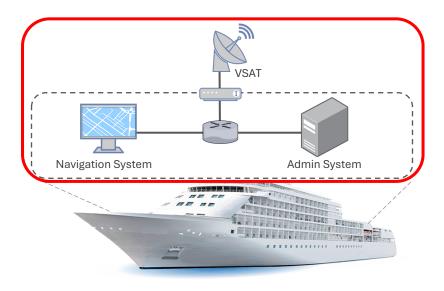

5

Intellectual property theft

Cyber attackers engage in intellectual property theft to steal proprietary designs, trade secrets, and confidential business information, often aiming to gain a competitive edge, disrupt innovation, or sell valuable data to third parties.

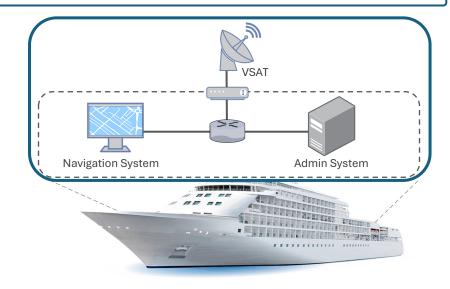

4

Source: Marlink Global Maritime Cyber Threat Report H2 2024



- Tools/Frameworks: Nessus, OpenVAS, STRIDE, ATT&CK, etc.
- Ref: Svilicic et al. (2019), Kavallieratos et al. (2019), Goudossis et al. (2019)

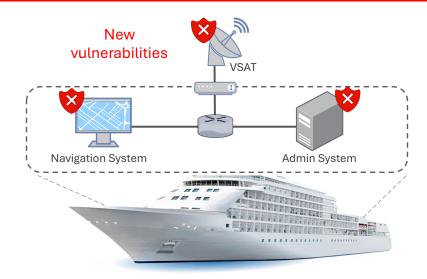
Research Gap: More systematic, but still the possibility of multi-step or multi-host attacks remain underexplored.



- Methods: MaCRA, fuzzy theory and attack trees, etc.
- Ref: Tam & Jones (2019),
 Bolbot et al. (2019),
 Shang et al. (2019)

MV-HARM, Enoch et al. (2021)

Proposed a formal graphical security model to capture **multistage attack paths**, considering a **complete maritime vessel network**.

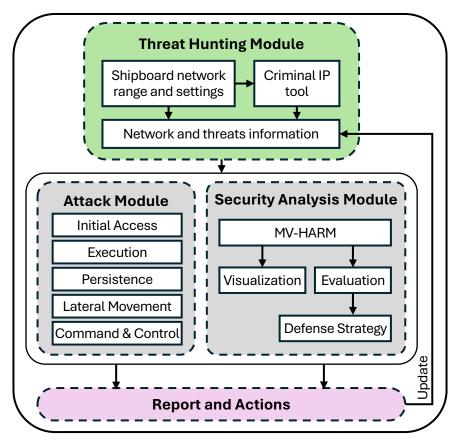


MV-HARM, Enoch et al. (2021)

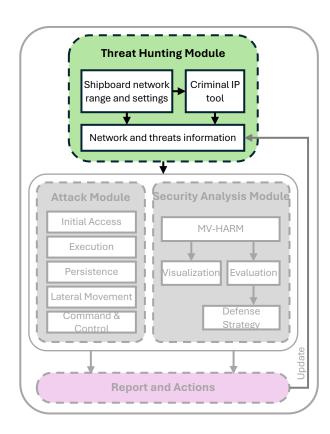
However, one of the main drawbacks of MV-HARM is that information on the **vulnerabilities** is **not up-to-date**.

Key Contributions

Propose a framework for **threat-hunting** and **security management** of a vessel's attack surface.

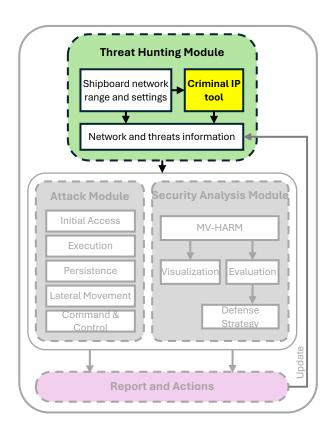


Demonstrate the proposed framework using **operational data from an actual ship** located offshore.

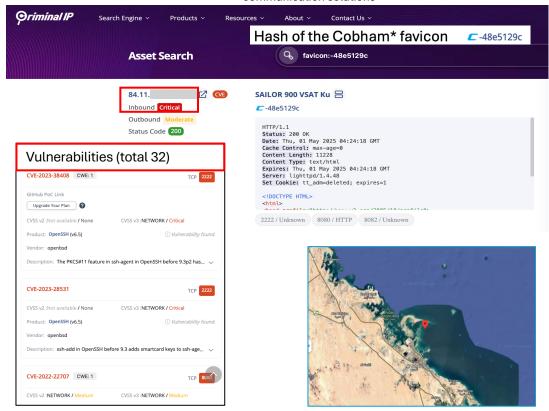


Perform a **risk assessment** using the security model named MV-HARM.

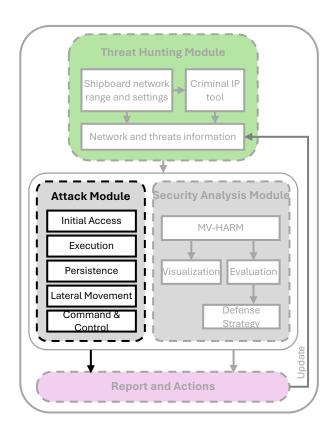
Proposed Framework



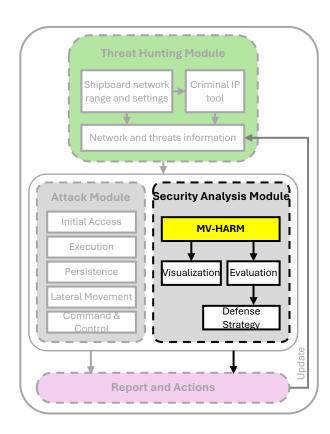
Threat Hunting Module



- Uses Criminal IP to collect real-time data on vessel-exposed assets (IPs, services, vulnerabilities).
- Identifies internet-facing systems (e.g., AIS, SATCOM) and compiles configuration/threat data for risk analysis.

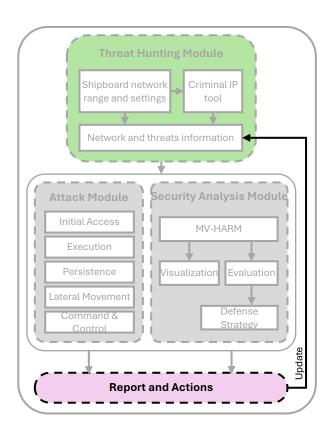

Threat Hunting Module

* Cobham Satcom: A global provider of satellite and radio communication solutions

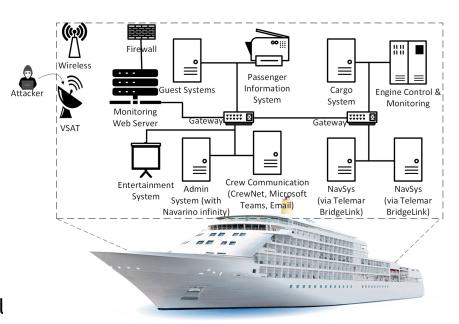


Attack Module

- Emulates adversary behavior via MITRE ATT&CK.
- Covers TTPs: Initial Access, Execution, Persistence, Lateral Movement, Command & Control.
- Provides detailed understanding of potential exploitation paths.


Security Analysis Module

* A graphical security model that visualizes and evaluates multi-layered attack paths


- Employs MV-HARM* for hierarchical attack modeling:
 - Upper layer network topology/reachability
 - Lower layer vulnerabilities & threats
- Includes:
 - Evaluation module: computes security metrics
 - Risk Metric = Impact × Attack Probability
 - Attack Success Probability (from CVSS)
 - Threat-Specific Risk (using STRIDE categories)
 - Number of Attack Paths
 - Defense strategy module: recommends **mitigations** (segmentation, patching, isolation).

Report and Actions

- Generates detailed reports:
 - Attack paths, vulnerabilities, metric scores, and mitigation advice
- Supports iterative reassessment as assets or threats evolve.

- The scope of this case study:
 - Defense, Report and Actions components not included
- Onboard network of a commercial vessel:
 - Based on ICS 2021 guidelines.
 - Mixed OT (navigation, engine) + IT (admin, crew comms).
 - Connected via VSAT and coastal networks.

Attacker model:

- Onshore adversary targeting externally connected systems.
- **Goal 1:** Compromise *Crew Communication portal* (old Apache).
- Goal 2: Hijack Navigation system via malicious update to alter vessel route.

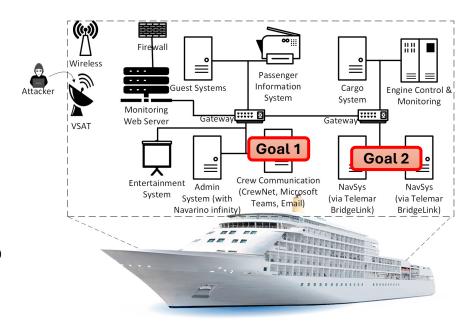
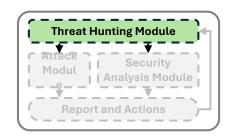
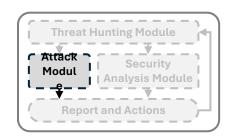



Table. Vulnerabilities Information (Selected)

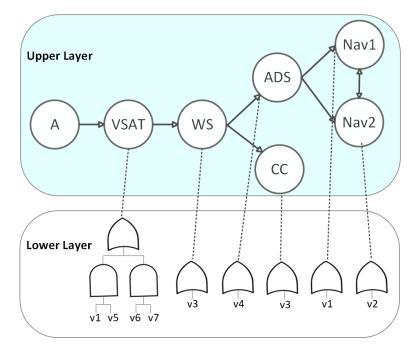

Asset	CVE-ID	ID	BS	S	T	R	Ι	D	E
VSAT	CVE-2023-38408	v1	9.8	0.0	0.5	0.3	0.0	0.0	0.2
	CVE-2021-41617	v5	7.0	0.0	0.5	0.3	0.0	0.0	0.2
	CVE-2023-28531	v2	9.8	0.0	0.5	0.3	0.0	0.0	0.2
	CVE-2020-15778	v6	7.8	0.0	0.5	0.3	0.0	0.0	0.2
	CVE-2016-10009	v7	7.3	0.0	0.5	0.3	0.0	0.0	0.2
Admin System	CVE-2019-11072	v3	9.8	0.0	0.5	0.3	0.0	0.1	0.1
Crew Comm.	CVE-2022-22707	v4	5.9	0.2	0.2	0.2	0.2	0.2	0.1
NavSys 1	CVE-2023-38408	v1	9.8	0.0	0.5	0.3	0.0	0.0	0.2
NavSys 2	CVE-2023-28531	v2	9.8	0.0	0.5	0.3	0.0	0.0	0.2
Web Server	CVE-2019-11072	v3	9.8	0.0	0.5	0.3	0.0	0.1	0.1
(Navarino Mon.)									

BS: CVSS base score

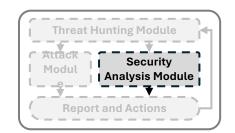
Threat Hunting (Criminal IP):

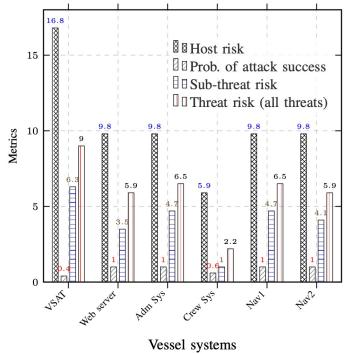
- Real-time data collection (Cobham favicon hash = -48e5129c).
- 58 vulnerabilities found (critical-low).
- Example: VSAT interface uses default credentials → high risk.
- Vulnerabilities mapped to STRIDE threat weights.

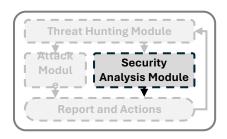
Attack Agent Simulation:


- Initial Access: exploit VSAT via SSH flaws (T1190).
- **Execution:** run code via ssh-agent bugs (T1059).
- **Persistence:** reuse credentials, create accounts (T1136).
- Lateral Movement: pivot from VSAT
 → Web Server → Admin → Crew/Nav
 Systems (T1021, T1068).
- Command & Control: establish HTTPS C2 over satellite link (T1071).

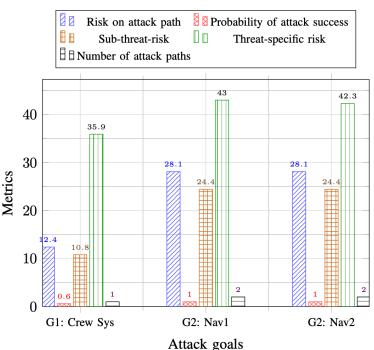
| Wireless Passenger Information Guest Systems Cargo **Engine Control &** System System Monitoring Monitoring Gateway A Gateway ::::: 🖎 Web Server Crew Communication Entertainment Admin NavSys NavSys (CrewNet, Microsoft System (with (via Telemai (via Telemar Navarino infinity BridgeLink) BridgeLink)

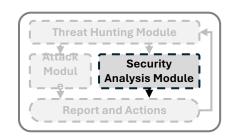

T = MITRE ATT&CK tactic/technique

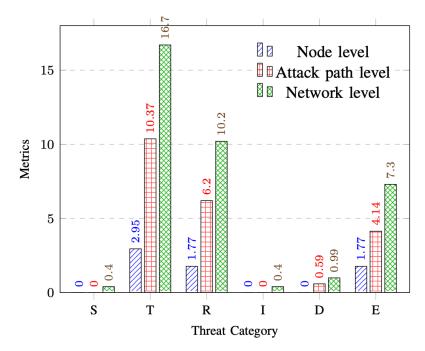

- Security Analysis (MV-HARM):
 - Graphical attack paths linking vulnerabilities.



19


- Security Analysis (MV-HARM) (cont.):
 - Host risk: VSAT highest due to multiple critical CVEs and external exposure.
 - Prob. of attack success: Systems with single critical CVEs → higher attack probability (no chaining).
 - Sub-treat risk (T, I, E): VSAT ranks highest across Tampering, Info Disclosure, Elevation.
 - Threat risk (all threats): VSAT dominates total risk; Crew minimal.




Security Evaluation by Attack Goal:

- G1 (Crew) → 1 attack path; G2 (Nav) → 2 paths → broader attack surface.
- G2 shows highest risk & threat-specific risk.
- Mitigating one navigation system can reduce risk in the other.

- Individual Threat Analysis (Admin System):
 - 'Tampering' (T) → highest risk at node level.
 - 'Spoofing' (S) and 'Information
 Disclosure' (I) → lowest risk locally but some network-level exposure.
 - Highlights importance of multi-level contextual evaluation.

Conclusion

- Maritime systems' connectivity increases vulnerability; traditional methods use **outdated** data.
- Our proposed framework combines real-time threat intelligence
 + MV-HARM modeling for continuous, quantitative risk
 assessment.
- Demonstrated effective analysis using **live vessel data** and simulated attacks.
- Enables continuous monitoring and informed security decisions.
- Future work: automate the Defense/Reporting/Action phase for onboard response.

Thank you!

```
Contact: Simon Yusuf Enoch <simony@whitecliffe.ac.nz>
```

Hyunjae Kang hyunjae.kang@uq.edu.au